Course Information
- 6 Jan 2025 (Mon) - 20 Jan 2025 (Mon) 7:00 PM - 10:00 PM
($6280)
Course Overview
課程名稱:Microsoft Certified Azure Data Scientist Associate (1科 Azure Machine Learning 及 MLflow) 國際認可證書課程
機器學習 (Machine Learning) 是一種透過算法和統計模型,讓電腦系統能夠自動從數據當中發掘相關性,從而作出數據預測及輔助人類進行決策的技術。
機器學習是人工智能的一個範疇,使電腦系統能夠在不需要明確的人手編程的情況下,通過大量訓練數據自行學習和改進。
MLflow 是一個開放源始碼 (Open Source) 平台,其目標是管理機器學習的生命周期,包括實驗追蹤、模型管理、部署以及集中儲存。MLflow 亦幫助數據科學家 (Data Scientist) 更有效地開發、訓練和管理機器學習模型。
以下列出使用 Microsoft Azure Machine Learning 和 MLflow 的十大優勢:
- 集成環境:Azure Machine Learning 提供了與 MLflow 的無縫集成 (Seamless Integration),使您管理機器學習實驗和部署過程更加簡單高效。
- 自動化機器學習:Azure 提供自動化機器學習功能,能夠自動選擇最合適的算法和超參數,提升模型準確性。
- 可擴展性:Azure 的雲服務架構可隨意擴展,以處理大量數據和突發的運算需求,滿足不同規模的機器學習任務。
- 實驗追蹤:使用 MLflow 可以輕鬆追蹤和比較不同的模型實驗,記錄每次運行的參數和結果,方便您人手選擇最佳模型。
- 模型管理:MLflow 支持模型版本控制和儲存,確保模型的可重現性和可追溯性,便於在生產環境中的部署和管理。
- 靈活的部署選項:Azure Machine Learning 提供多種部署選項,包括雲端 (Cloud)、邊緣 (Edge) 設備和本地 (On-Premises) 環境,滿足不同的業務需求。
- 安全性:Azure 提供企業級的安全措施,保護數據和模型的安全性,確保合規性和隱私。
- 可視化工具:內建的可視化工具和儀表板幫助用戶更直觀地了解數據和模型的表現,提升分析效率。
- 協作功能:支持多用戶協作,團隊成員可以共享實驗結果和模型資源,促進團隊合作和知識共享。
- 高效的資源管理:Azure 的計算資源可以按需分配和管理,避免資源浪費,降低運營成本。
這些優勢使得使用 Microsoft Azure Machine Learning 和 MLflow 成為許多企業和開發者進行機器學習開發和部署的首選方案。
What You’ll Learn
課程名稱:Microsoft Certified Azure Data Scientist Associate (1科 Azure Machine Learning 及 MLflow) 國際認可證書課程
Design and prepare a machine learning solution
- Design a machine learning solution
- Determine the appropriate compute specifications for a training workload
- Describe model deployment requirements
- Select which development approach to use to build or train a model
- Manage an Azure Machine Learning workspace
- Create an Azure Machine Learning workspace
- Manage a workspace by using developer tools for workspace interaction
- Set up Git integration for source control
- Create and manage registries
- Manage data in an Azure Machine Learning workspace
- Select Azure Storage resources
- Register and maintain datastores
- Create and manage data assets
- Manage compute for experiments in Azure Machine Learning
- Create compute targets for experiments and training
- Select an environment for a machine learning use case
- Configure attached compute resources, including Azure Synapse Spark pools and serverless Spark compute
- Monitor compute utilization
Explore data, and train models
- Explore data by using data assets and data stores
- Access and wrangle data during interactive development
- Wrangle data interactively with attached Synapse Spark pools and serverless Spark compute
- Create models by using the Azure Machine Learning designer
- Create a training pipeline
- Consume data assets from the designer
- Use custom code components in designer
- Evaluate the model, including responsible AI guidelines
- Use automated machine learning to explore optimal models
- Use automated machine learning for tabular data
- Use automated machine learning for computer vision
- Use automated machine learning for natural language processing
- Select and understand training options, including preprocessing and algorithms
- Evaluate an automated machine learning run, including responsible AI guidelines
- Use notebooks for custom model training
- Develop code by using a compute instance
- Track model training by using MLflow
- Evaluate a model
- Train a model by using Python SDK v2
- Use the terminal to configure a compute instance
- Tune hyperparameters with Azure Machine Learning
- Select a sampling method
- Define the search space
- Define the primary metric
- Define early termination options