Udemy

Build & Test AI Agents, ChatBot, RAG with Ollama & Local LLM

立即報名
  • 2,143 名學生
  • 更新於 11/2025
4.5
(222 個評分)
CTgoodjobs 嚴選優質課程,為職場人士提升競爭力。透過本站連結購買Udemy課程,本站將獲得推廣佣金,有助未來提供更多實用進修課程資訊給讀者。

課程資料

報名日期
全年招生
課程級別
學習模式
修業期
13 小時 7 分鐘
教學語言
英語
授課導師
Karthik KK
評分
4.5
(222 個評分)
1次瀏覽

課程簡介

Build & Test AI Agents, ChatBot, RAG with Ollama & Local LLM

Learn Building and Testing AI Agent, ChatBot, RAG with LangChain v1.0.3 and LangSmith using Ollama and Local LLMs

Build & Test AI Agents, Chatbots, and RAG with Ollama & Local LLMs


This course is designed for complete beginners—even if you have zero knowledge of LangChain, you’ll learn step by step how to build LLM-based applications using local Large Language Models (LLMs).


The course is fully updated with LangChain v1.0.3


We’ll go beyond development and dive into evaluating and testing AI agents, RAG applications, and chatbots using RAGAs to ensure they deliver accurate and reliable results, following key industry metrics for AI performance.


What You’ll Learn:


  • Fundamentals of LangChain & LangSmith

  • Chat Message History in LangChain for storing conversation data

  • Running Parallel & Multiple Chains (RunnableParallels, etc.)

  • Building Chatbots with LangChain & Streamlit (with message history)

  • Understanding Tools and Tool chains in LLM

  • Building Tools and Custom Tools for LLM 

  • Creating AI Agents using LangChain

  • Implementing RAG with vector stores & local LLM embeddings

  • Using AI Agents and RAG with Tooling while building LLM Apps

  • Optimizing & Debugging AI applications with LangSmith

  • Evaluating & Testing LLM applications with RAGAs

  • Real-world projects & hands-on testing strategies

  • Assessing RAG & AI Agents with RAGAs


This entire course is taught inside Jupyter Notebook with Visual Studio, providing an interactive, guided experience where you can run the code seamlessly and follow along effortlessly.


By the end of this course, you’ll be able to build, test, and optimize AI-powered applications with confidence!

課程章節

  • 10 個章節
  • 124 堂課
  • 第 1 章 Introduction to Langchain
  • 第 2 章 Complete Course Source code
  • 第 3 章 Running Local Large Language Model (LLM) in local Machine with Ollama
  • 第 4 章 Understanding and working LangChain Basics
  • 第 5 章 LangChain Chains and Runnables
  • 第 6 章 Chat Message History with LangChain
  • 第 7 章 Building ChatBots with LangChain and Streamlit (Like ChatGPT with Local LLM)
  • 第 8 章 Upgrade to LangChain v1.0 - All new features and few breaking changes ⚡️
  • 第 9 章 Building RAG Application with PDF File, Vector Stores & Embedding with LangChain
  • 第 10 章 Tools and Function Calling with LLMs

課程內容

  • Running LLMs in Local Machine for development of LLM application
  • Understand the power of Langchain for building Local LLM application
  • Understand Chain, Prompts, ChatPromptTemplates, ChatMessageHistory
  • Building Chatbots with Historical Information with Langchain
  • Building RAG application with Vector stores, Embedding and Local LLMs
  • Understanding and Building Tools for LLMs
  • Building AI Agents with Tooling support for LLMs
  • Testing/Evaluating AI Agent & RAG Application with RAGAs


評價

  • R
    Raju Chalakapally
    4.0

    good

  • B
    Bashith Jaleel
    5.0

    Amazing course for upskilling on AI technology. Everything from the beginning is covered. Clear Explanation!. It also covers the conceps of FastMCP which is absolutely a credit for u Easily able to understand 'what' is all about and 'how' terms on Traditional RAG, Agentic RAG, Langchain framework. Overall Its a great learning. Thank you!

  • N
    Nazneen Ismail
    4.5

    very easy to understand. The code needs to be updated as per the latest langchain version

  • S
    Suhas Satishpatil
    5.0

    Great!

立即關注瀏覽更多

本網站使用Cookies來改善您的瀏覽體驗,請確定您同意及接受我們的私隱政策使用條款才繼續瀏覽。

我已閱讀及同意